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Abstract— The fuzzy signature [1], [2] approach is aimed
at finding a hierarchically decomposed solutions by adding
new elements to Zadeh’s approach [3]. It tackles the problem
by splitting the problem into hierarchically organized local
sub-models and by applying more complex and heterogenous
descriptors, more fit for the identification of extremely complex
models. However, the computational time complexity still affects
the fuzzy signatures as we were attempt to create an atomic
fuzzy signature for each data point we get. Importantly, the
atomic fuzzy signatures we store has properties we can make use
of to make search over this structure computationally efficient.
In this paper we introduce a new approach that uses the meta-
data about a set of fuzzy signatures to extract a Polymorphic
Fuzzy Signature. Productively, a polymorphic fuzzy signature
represents its base set of fuzzy signatures in a higher meta
level which also allows search/inference, and so can reduce the
computational time complexity of the inference process.

I. INTRODUCTION

Fuzzy systems are a general form of expert control us-

ing fuzzy sets representing vague / linguistic predicates,

modelling a system by If ... then rules. In the classical

approaches of Zadeh [3] and Mamdani [4], the essential

idea is that an observation will match partially with one

or several rules in the model. The conclusion is calculated

by evaluation of the degree of these matches and by the

use of the matched rules. The rules represent relations in

the multidimensional input-output state space. Mamdani’s

technique is based on orthogonal projections, while Zadeh’s

method relates to arbitrary and fully known relations. A

serious problem is caused by the high computational time

and space complexity of rule bases describing systems with

multiple inputs with proper accuracy. The latter is much

more computationally expensive. The complexity allows little

general systems application (or real time application) of

classical fuzzy algorithms, where the inputs exceed 6 or so.

Traditional fuzzy systems deal with simple data: the number

of inputs is well defined, and values for inputs occur for

most or all data items. This further reduces their general

applicability.

The most important aspect of the construction of sub-

symbolic models of very complex systems are the trade-

offs between accuracy and computability, just like biological

and human solutions to formally intractable problems. Fuzzy

Signature [1], [2] approach is aimed at finding a solutions

by adding new elements to Zadeh’s approach, by splitting

the problem into local sub-models and by applying more

complex and heterogenous descriptors, more fit for the

identification of extremely complex models.

B.S.U. Mendis and T.D. Gedeon are with the School of Computer
Science, The College of Engineering and Computer Science, The Australian
National University, Australia (email: {sumudu, tom}@cs.anu.edu.au).

However, the computational time complexity still affects

the fuzzy signatures [5] as we create an atomic fuzzy

signature for each data point we get. Importantly, the atomic

fuzzy signatures we store has properties we can make use of

to make search over this structure computationally efficient.

This is intuitively obvious if this is a set of data which a

human being would understand. In this paper we discuss our

proposed approach that uses the meta-data about a set of

fuzzy signatures to extract a Polymorphic Fuzzy Signature.

This polymorphic fuzzy signature represents its base set of

fuzzy signatures in a higher level of search/inference to

reduce the computational time complexity of the inference

process. This can be seen to be analogous to information

retrieval indexes, or video compression codecs which keep

key frames and changes to the key frame. The differences

between polymorphic fuzzy signature instances which are

judged to be the same or similar enough are significant

properties of many of the techniques below. Search on the

extracted meta-data will be quick, and we can then drill down

to the actual data.

II. FUZZY SIGNATURES

In this section we describe the initial concept of the Fuzzy

signatures [1], [5]. Fuzzy signatures can be considered to be

fuzzy n-dimensional objects, which can be compared with

each other.

A. Vector Valued Fuzzy Sets

In 1965 L.A. Zadeh published the idea of fuzzy set theory

[6] for better modeling of uncertainty. Fuzzy set theory

defines the membership function of a fuzzy set A as,

qA : X → [0, 1] . (1)

Goguen [7] considered that optimality, relative to the sit-

uation, of an object in the real world can not be always

organized into a total ordered set based on possible criteria.

As an example: selection of an optimal shopping list is based

on all possible shopping lists as well as several conflicting

criteria of optimality, such as cost, nutritional value, quality,

and so on. Thus we can assign only a partial ordering among

them, and need to select the best shopping list according

to possible partial ordering criteria. Therefore, Goguen [7]

generalized the concept of fuzzy sets to L-fuzzy sets to allow

the partial ordering of sets in fuzzy systems. The membership

function of a L-fuzzy set is defined as,

qA : X → L. (2)

where L is a lattice [8], [9].
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The early work of Kóczy introduced the Vector Valued

Fuzzy Sets (VVFS) concept [10] is a special form of an L-

fuzzy set, and can be denoted in the following form:

Definition 1: A Vector Valued Fuzzy Set, A, on X =
X1 × . . . × Xn can be written as:

A =
(
X, qA

)
(3)

The membership function q
A

can be defined as:

qA : X → [0, 1]n (4)

B. Fuzzy Signatures

Intelligent decision making systems need to describe,

compare and classify objects with complex structure and

interdependent features. The structural complexity expresses

the correlation of different dimensions, and can be organized

into different branches and levels in a hierarchical structure.

The global preference among the set of input dimensions is

a relation, which can be approximated using an aggregation

function. Hierarchical Fuzzy Signatures are fuzzy multidi-

mensional descriptors of real world objects that inherit multi-

aggregateness from VVFSs. Now, we recall the definition of

fuzzy signature concept [1], [11]:

Definition 2: A Fuzzy Signature is a VVFS, where each

vector component is another VVFS (branch) or an atomic

value (leaf), and denoted by:

qA : X → [ai]
k
i=1

(
≡

k∏
i=1

ai

)
. (5)

where ai =
{

[aij ]
ki

j=1 ; if branch (ki > 1)
[0, 1] ; if leaf

and Π describes the Cartesian product.

The Fig. 1(a) shows an example fuzzy signature [12]. This

fuzzy signature describes an individual SARS patient, which

is a data point in the SARS data collected in 2003 [13],

[14], [15]. Fig. 1(b) shows the hierarchical view of the fuzzy

signature shown in Fig. 1(a).
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Fig. 1: Example Fuzzy Signature

Fig. 2 shows an example of a fuzzy signature structure

with two arbitrary levels g and (g + 1). Now, we use

the following notation for the description of all concepts

described in later sections.

The aggregation of a0 in level 0 of the fuzzy signature

structure can be written as a0 = @0{ai}, where @0 is an
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Fig. 2: An Arbitrary Fuzzy Signature

arbitrary aggregation function, i = 1, . . . , l, and a0, ai ∈
[0, 1]. Also, aggregation of an arbitrary branch aq...i in level

g (Fig. 2) can be written as, aq...i = @q...i{aq...ij}, where

@q...i is an arbitrary aggregation function, j = 1, . . . , n and

aq...i, aq...ij ∈ [0, 1].
Fig. 3 shows an example aggregation of a fuzzy signature

using max and min as the aggregation functions.
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Fig. 3: Aggregation of fuzzy signatures

III. POLYMORPHIC FUZZY SIGNATURE (PFS)

In this section we introduce the concept of Polymorphic

Fuzzy Signatures (PFS). Further we proposed the use of gen-

eralized Weighted Relevance Aggregation Operator (WRAO)

in PFSs. Polymorphic fuzzy signatures have the ability

to reduce the computational time for searching the large

number of individual fuzzy signature structures required

for a complex decision making model by introducing meta

information.

A. Polymorphic Fuzzy Signatures

We observe that in some situations we may be able to find

a single meta fuzzy signature for a set of individual data

points, by reducing the number of fuzzy signatures required

to search in a decision making model. We call such a fuzzy

signature a polymorphic fuzzy signature for the base set of

data points it represents.

Lemma 1: A polymorphic fuzzy signature is a fuzzy sig-

nature according to definition 2. However leaf nodes are

fuzzy sets.

As the definition 1 describe, unlike in fuzzy signatures

in polymorphic fuzzy signature’s leaf nodes are fuzzy sets.
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Fig. 4 shows an example of a polymorphic fuzzy signature

structure with two arbitrary levels g and (g + 1).
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Fig. 4: An Arbitrary Polymorphic Fuzzy Signature (PFS)

Below, we formulate an objective function to optimize a

polymorphic fuzzy signature for automation learning from

data.

Definition 3: Let A = {S1, S2, . . . , Sn} be a collec-

tion of fuzzy signatures for a certain problem and let

{d1, d2, . . . , dn} be the collection of data points1 they repre-

sent respectively. Now, let Si be the corresponding fuzzy

signature of the data point di. Further, let Si(di) be the

degree2 of match of the data point di with fuzzy signature

Si. Then S is said to be a polymorphic fuzzy signature of

the set A if

n∑
i=1

|S(di) − Si(di)| ≤ ε (6)

Where ε is a small number close to zero.

IV. GENERALIZED WEIGHTED RELEVANCE

AGGREGATION OPERATOR (WRAO)

An interesting research direction in the fuzzy signature

context is what kinds of aggregations are applicable for

combining data with partly different substructures. This

sub-section we propose the use of generalized Weighted

Relevance Aggregation Operator (WRAO) [16] to aggregate

polymorphic fuzzy signatures. WRAO enhances the adapt-

ability of the fuzzy signature model to different applications

and simplifies the learning of fuzzy signature models from

data by combining both weight and aggregation functions

into one operator.

Now, we recall the definition of WRAO in [16].

Definition 4: The generalized Weighted Relevance Aggre-

gation Operator (WRAO) of an arbitrary branch aq...i with n

sub branches sq...i1, sq...i2, . . . , sq...in ∈ [0, 1], and weighted

relevancies wq...i1, wq...i2, . . . , wq...in ∈ [0, 1], for a fuzzy

signature, is a function g : [0, 1]2n → [0, 1] such that

1In the fuzzy signature concept, a data point means a collection of data
which represents an event, e.g. in medical applications, a patient’s data
record of a whole day can be considered as a data point [12].

2The degree of match is the final result of aggregating the input data
point di using the fuzzy signature Si

aq...i =

⎡
⎣ 1

n

n∑
j=1

(sq...ij • wq...ij)
pq...i

⎤
⎦

1
pq...i

(7)

Following 3 properties must be satisfied:

(i) wq...ij ∈ [0, 1]
(ii)
∨n

j=1 wq...ij ≤ 1
(iii) pq...i �= 0

In [16], we prove the following two theorems for WRAO.

Theorem 1: Let aq...i be an arbitrary branch with n

sub-branches aq...i1, . . . , aq...in, and weighted relevancies

wq...i1, . . . , wq...in, for an arbitrary fuzzy signature (see fig-

ure 2). Then WRAO in definition (4) holds the following

properties:

(i) Idempotency

(ii) Commutativity

(iii) Monotonicity

In the literature [17], [18] monotonicity has been consid-

ered in this way. It is adequate to satisfy the requirement

to be a meaningful aggregation function [19] as weights,

wq...i1, wq...i2, . . . , wq...in, in WRAO are fixed for any in-

stance of a fuzzy signature in the decision making phase, and

both weights and aggregation operators vary simultaneously

only in the learning phase.

Theorem 2: The WRAO in equation (7) holds the follow-

ing characteristics:

(a) pq...i → 0 then WRAO → geometric mean

(b) limpq...i→+∞ g(sq...i1, . . . sq...in; wq...i1, . . . , wq...in)

= max(sq...i1wq...i1, . . . sq...inwq...in)

(c) limpq...i→−∞ g(sq...i1, . . . sq...in; wq...i1, . . . , wq...in)

= min(sq...i1wq...i1, . . . sq...inwq...in)

(d) p = 1 then WRAO→ arithmetic mean

(e) p = −1 then WRAO→ harmonic mean

The WRAO has been derived similarly to the form of

the generalized weighted means function discussed in [17]

in order to satisfy the Weighted Relevance Aggregation

concept in definition 4. The WRAO is a more generalized

version of weighted mean as it has weaker constraint on

weights

⎛
⎝ n∨

j=1

wq...ij ≤ 1

⎞
⎠ compared to that of weighted

mean. Thus, WRAO is different from the generalized

weighted means function [17]. Further, WRAO aggregates

the weighted input whereas generalized weighted means

aggregates the non weighted input and uses the weights as

parameters to achieve the desired aggregation function.

A. Method of Extracting WRAO from Data

In this section we explain the method of learning WRAO

from real world data briefly with more detailed explanations

to be found in [16]. First, to avoid the first 2 constraints

on the weighted relevance factor wq...ij in definition 4, we

replaced it by the following sigmoid function,
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wq...ij =
1

1 + e−λq...ij
(8)

where λq...ij ∈ �. Now, the equation (7) can be modified as

follows,

aq...i =

⎡
⎣ 1

n

n∑
j=1

(
sq...ij

[
1

1 + e−λq...ij

])pq...i

⎤
⎦

1
pq...i

(9)

The pq...i and λq...ij are called the aggregation factors of

branch q . . . i and weighted relevance factor of sub branch

q . . . ij of the fuzzy signature in figure 4, respectively. This

form of WRAO (9) can easily be used for gradient based

learning.

The parameters we need to learn are the aggregation factor

pq...i and weighted relevance factors λq...ij for each WRAO

at each node of the fuzzy signature structure shown in figure

4. First we can obtain the partial derivatives of the equation

(9) w.r.t. pq...i:

∂aq...i

∂pq...i
=

[
a
1−pq...i

q...i

np2
q...i

]{
n∑

j=1

t ln(t) − nt
′
ln
(
t
′)}

(10)

where t = (aq...ijwq...ij)
pq...i and t

′
= a

pq...i

q...i . Similarly we

obtain the partial derivatives of the equation (9) w.r.t. λq...ik:

∂aq...i

∂λq...ik
=

[
1

n

n∑
j=1

(sq...ijwq...ij)
pq...i

] 1
pq...i

−1

T (11)

where wq...ij = 1

1+e−λq...ij
and T =

{
d([sq...ikwq...ik]pq...i )

dλq...ik

}
.

The Levenberg-Marquardt (LM) method [20], [21] has

been used for the learning of WRAO. The LM algorithm is

a widely used advanced optimization algorithm that outper-

forms simple gradient descent and other gradient methods

when applied in a wide variety of problems. The LM

algorithm is a pseudo-second order, Sum of Square Errors

(SSE) based optimization method, in which the Hessian

matrix is estimated using the gradients [21], [20]. The two

equations (10) and (11) above, together with the chain rule

for derivation have been used to calculate the Jacobian,

which is used to approximate the Hessian matrix of the LM

learning. A detailed discussion of the method of using LM

for learning WRAO can be found in [22].

B. Experiment 3: LM Learning of WRAO form Data

Now, we explain the results of 2 experiments to extract the

WRAO from data. As the first experiment we take the High

Salary Selection problem of employees [23] and the SARS

patient classification problem as the second experiment .

Next, before go to the experiments, we briefly introduce

the concept of Fuzzy Classification Error (FYCLE) that can

be used to better illustrate and compare the results of the

experiments.

1) Fuzzy Classification Error: We formulate the Fuzzy

Classification Error (FYCLE) in the following way. First,

we specify that both desired output and predicted output of

an experiment are in the range [0, 1]. Next we define a set

of rules for the classification, and these rules are visualized

in the following Fig. 5.
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Fig. 5: Fuzzy Classification Error Rules

According to figure 5, there are 3 categories of classifica-

tions that can occur, being Good, Bad and Very Bad (VB).
Now we assume the pair of predicted and desired values of

the ith input, respectively, are taken as x and y coordinates of

the point Pi on the 2 dimensional classification error space

in figure 5. The Fuzzy Classification Error of an arbitrary

point Pi can be written as,

FY CLE(Pi) =

⎧⎨
⎩

0 if Pi ∈ Good
0.5 if Pi ∈ Bad
1 if Pi ∈ V ery Bad

Let us consider the 4 straight lines, B1, B2, G1, and G2,

in figure 5. In this experiment, they are equivalent to,

B1 ≡ y − x − 0.5 = 0
G1 ≡ y − x − 0.2 = 0
G2 ≡ y − x + 0.2 = 0
B2 ≡ y − x + 0.5 = 0

Now, The Fuzzy Classification Error of an arbitrary point

Pi can be calculated as,

FY CLE(Pi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if G1(Pi) ≤ 0 & G2(Pi) ≥ 0
0.5 if (B1(Pi) ≤ 0 & G1(Pi) > 0)

OR
(G2(Pi) < 0 & B2(Pi) ≥ 0)

1 if B1(Pi) > 0 OR B2(Pi) < 0

Next, the Sum of Fuzzy Classification Error (SYCLE) for

a set of data with m records can be calculated as,

SY CLE(P ) =

m∑
i=1

FY CLE(Pi) where m ∈ N (12)

Further, we can define the Average Fuzzy Classification

Error (AVGFYCLE) as follows:
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AV GFY CLE(P ) =
1

m

m∑
i=1

FY CLE(Pi) where m ∈ N (13)

The AVGFYCLE, is more useful when we need to com-

pare the results of the same experiment carried out with two

or more different data sets and the number of data points in

these data sets are different. In this paper, we always reprise

the same data sets for all experiments. Therefore, the Sum of

Fuzzy Classification Error (SYCLE) is adequate to visualize

and classify the results of the experiments in this paper.

2) High Salary Selection PFS: The High Salary Selection

problem has been discussed in [23]. This problem is to find

the degree of likelihood of having a high salary based on the

contacts, age and work experience of an employee. Figure

6 shows the polymorphic fuzzy signature which is obtained

using domain experts knowledge for the high salary selection

problem.
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Fig. 6: High Salary Selection PFS

Note that in figure 6 @i and wi represent the aggregation

function and weighted relevance of node i, respectively.

We learnt the WRAOs for each node in the High Salary

Selection fuzzy signature structure in figure 6 automatically

[22]. Figures 7 and 8 show training and test results of the

experiment. The Desired values plot shows the desired degree

of relevance of each employee’s salary to the high salary

category. The ”Cls. Corct” results plot shows the correctly

predicted results of the High Salary Selection fuzzy signa-

ture, w.r.t. the Fuzzy Classification Error in section IV-B.1.

The ”Cls. Error” results plot shows the incorrectly predicted

results of the High Salary Selection fuzzy signature. Table

I shows the training and test results of this experiment

numerically.

TABLE I: Test Results of High Salary Selection PFS

MSE SYCLE

Train 0.0130 8.5
Test 0.0130 6

According to the results illustrated in figures 7 and 8 and

table I, we can conclude that the Polymorphic fuzzy signature

for High Salary Selection together with learnt WRAOs can

very well predict the desired results. Also that the LM

method can learn both aggregations and weights for the High

Salary Selection PFS for good results.
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Fig. 7: Training Results of Salary Signature
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Fig. 8: Testing Results of Salary Signature

3) SARS Patient Classification PFS: Next, as the second

experiment again the SARS Patients classification problem

has been used. The first part of the second experiment is to

learn to classify the SARS patient data into 2 classifications,

that is other patients and SARS patients. Figure 9 shows the

test result of the experiment. The degree of abnormal condi-

tion of all SARS patients data (range 3,000 to 4,000) remains

above 0.5 and all non-SARS patients data (range 1,000 to

3,000) remain close to 0. Table II compares the results of

SARS patients classification PFS with non-weighted, WRA,

and WRAO methods respectively.

During the second part of this experiment we found that

the LM based learning method can also find aggregation

functions and weighted relevancies to classify data into 3 cat-

egories, namely SARS, other and normal patients. Extended

experiments show that the learning method can learn WRAOs

which can separate SARS data into 4 output target categories,
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Fig. 9: Test Results of SARS Signature
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Fig. 10: Test Results of SARS Signature for 4 classifications

namely SARS, pneumonia, hypertension and normal patients.

Figure 10 illustrates the results of the extended experiment

to learn 4 output target categories. It can be seen that for

the normal patient data in range 0 - 1000 the degree of

abnormality of their condition keeps close to 0, for the

pneumonia patient data in range 1000-2000 it keeps to 0.13,

for the hypertension patients in range 2000-3000 it keeps to

0.3 and for almost every SARS patient data range in 3000 -

4000 it keeps above 0.5. Also, the ”Cls. Corct.” and ”Cls.
Error” plots indicate the individual patient predictions that

are correct or wrong classifications respectively.

V. CONCLUSION

Polymorphic Fuzzy Signatures (PFS) was introduced. Next

we proposed Weighted Relevance Aggregation Operator

(WRAO) for aggregation of Polymorphic Fuzzy Signatures.

We used an example to show that the WRAO enhances

the results as well as the optimality of Polymorphic Fuzzy

Signatures. Experiments with two real world problems,

namely High Salary and SARS patients classifications, show

TABLE II: Test Results of SARS PFS

Train Test
MSE SYCLE MSE SYCLE

non-weighted PFS - - 0.2332 1000
PFS with WRA - - 0.0026 45

PFS with WRAO 0.0020 33.5 0.0018 25.5

that the Levenberg-Marquardt method based algorithm can

successfully learn WRAO for both problems. Further, for

the SARS patients classification problem WRAO not only

classifies input data into SARS and non-SARS patients, but

it also can classify data into 4 classifications, namely SARS,

pneumonia, hypertension and normal patients.

REFERENCES

[1] B. S. U. Mendis, “Fuzzy signatures: Hierarchical fuzzy systems and
alpplications,” Ph.D. dissertation, College of Engineering and Com-
puter Science, The Australian National University, Australia, 2008.

[2] B. S. U. Mendis and T. D. Gedeon, “Aggregation selection for hierar-
chical fuzzy signatures: A comparison of hierarchical owa and wrao,”
International Conference of Information Processing and Management
of Uncertainty in Knowledge Based Systems (IPMU), pp. 1–8, 2008.

[3] L. Zadeh, “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 3, no. 1, pp. 28–44, 1973.
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